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ABSTRACT

This note is a brief introduction to Donaldson’s polynomial in-
variants(cf [6]). We will begin with basic facts about instanton
moduli spaces and construct these invariants via intersection the-
ory. Finally we will discuss about an explicit example and give its
application.
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1 INSTANTON MODULI SPACES

We start with the derivation of instanton moduli spaces and some fundamental
properties. Given a closed Riemannian 4-manifold X and an Hermitian bundle
E over X, we say a connection A on F is anti-self-dual if its curvature satisfies
*Fy = —F4. Here x is the Hodge star operator given by underlying Rieman-
nian metric. Such connections are called instantons. Clearly ASD condition is
preserved by gauge group action, so we consider the set of all instantons moduli
gauge action, which is the moduli space of instantons. The fundamental fact is
the following theorem(cf [2]):

Theorem 1.1 (Freed-Uhlenbeck,1984). Fiz a non-trivial SU(2)-bundle E
over a simply-connected 4-manifold X with second Chern number k. If bT(X) >
0, then for generic smooth Riemannian metric g of X, the moduli space My(g)

contains no reducible connections and is a smooth manifold of dimension 8k —
3(bF +1).

Orientability of moduli spaces. This is a general fact for all 4-manifolds,
not only just simply-connected case. Let E — X be an SU(2)-bundle, and let
M? be the open subset of regular irreducible connections, then Donaldson proved
in [4]:

Theorem 1.2 (Donaldson,1987). The moduli space M? is orientable, with a
canonical orientation induced by an orientation of the space H'(X) ® H*(X).
Here HY(X) denotes the mazimal positive subspace of H*(X) with respect to
the intersection form.

Compactification of moduli spaces. The compactification is defined by
Donaldson in [3], essentially due to Uhlenbeck. Donaldson defined the ideal
connection to be a pair ([A], (z1,...,2;)) where [A] is a point in My_;, with
its curvature density defined to be the measure |Fy4|? + 872 >0z, We say
a sequence of ideal connections converges weakly if their curvature densities
converge as measures and their connections converge in C'™° over punctured
manifold. The notion of weak convergence endows the set of all ideal ASD
connections

IMy = My UM_1 x X UM_5 x s2(X)U...U M, x s¥(X)

with a topology. Here s'(X) denotes the I-th symmetric product of X. Denote
by My the closure of M} in IMj. The main result is the following:

Theorem 1.3 (Donaldson,1986). The space M, is compact.

2 CONSTRUCTION OF DONALDSON’S INVARIANTS

We are going to construct Donaldson’s polynomial invariant(cf [5]). Let %% be
the orbit space of irreducible connections on E over X. View the moduli space
M as a subset of &% . We wish to define invariants of X via a pairing (3, [M]),



for certain cohomology classes 8 € H* (%% ). But usually M is non-compact, so
we need to modify the definition via intersection theory.

Assume now the dimension of moduli space M, is even, say dim My = 2d,
where d = d(k) = 4k — 2(bT(X) + 1). This requires that b™ is odd, so we
may assume bt (X) is odd and > 3 to avoid reducible connections(cf Theorem
1.1). Fix an orientation Q2 for HT(X), we seek for invariants g (21, ..., Xq)
satisfying the following property:

(1) gx0(%1,...,Xq) depends on X; only through its homology class;
(ii

) (X1, ..., Xq) is multilinear and symmetric in [3;];
(i) gr,—0 = —qr.0;
)

(iv) g is natural, in the sense that if f : X — Y is an orientation-preservation
diffeomorphism, then

Qk,f*Q(f*(El)v ceey f*(Ed)) = qk7Q(El, ceey Zd).

where Y; are some embedded surfaces of X in general position.

Determinant line bundles. Suppose we have a family of operators { D :
I'E,®V) - I'(E,@W)} parametrized by a space T, we construct a line bundle
over T, whose fibres are:

det ind(Dy) = A" (Ker D) ® (A™**(Coker Dy))*

In our case, choose a square root of the canonical bundle K of a Riemann surface
Y, i.e. a line bundle K2 with K2 @ K2 = K. The Dirac operator then becomes
the usual 0 operator twisted by K%, written as dx : Q90 @ K2 — Q%1 @ K2,
We define %5, to be the determinant line bundle over 45, for the family of
operators d5; 4, obtained by coupling 45, to the connection A. For any tubular
neighbourhood v(X) of X, we also write £5 — %+, to be the pull-back of
previous line bundle via the restriction map.

Transversal intersections. Now suppose the tubular neighbourhoods
v(%;) are sufficiently small such that for distinct i, 7, k:

v(E)Nv(E;) Nuv(Ey) =9

For each ¢ we choose a section s; of the line bundle %%, over %Z(Zi) and let Vy,
be its zero-set. Transversality argument shows:

Proposition 2.1. We can choose sections s; such that the intersection M N
Vs, N...NVy, is transverse. Moreover, the intersection is compact, and hence
finite. Here the precise meaning of the intersection is that My N Vy = {[A] €
Mi|[Al,(s)] € V).

We are now in a position to define Donaldson’s polynomial invariants. Each
point of the intersection My N Vx, N...N Vy, carries a sign £1 since both Mj,
and the normal bundles of Vs, are oriented. We define g5 o by counting these
points with signs. The main assertion is that the definition is independent of
all the choices we have made:



Theorem 2.2 (Donaldson,1990). Under our assumption, if moreover k is
in the stable range, i.e. d(k) > 2k + 1, then the integer qi.q satisfies proper-
ties (i)-(iv) and is independent of the choices made as well as the underlying
Riemannian metric, thus defining a differential topological invariant.

Finally we want to point out that parallel theory holds when the gauge group
is SO(3) with a little bit more careful treatment.

3 APPLICATION TO DIFFERENTIAL TOPOLOGY

It turns out that Donaldson’s invariants are unstable under the connected sum
operation, thus being plausible to obtain new information beyond the inter-
section form. In the following part, we will consider a K3 surface example to
deduce the failure of h-cobordism theorem in dimension 4, thus showing that
these invariants are highly non-trivial.

Recall a K3 surface is a compact simply-connected complex surface with
trivial canonical bundle. Let X be a K3 surface and let o € H?(X;Z3) be a
class with a? = 2 (mod4). Consider the SO(3)-bundle F' with wo(F) = o and
p1(F) = —6. Under such condition, the formal dimension of the moduli space
M is zero, so in this case the polynomial invariant is just counting with signs
the points in the moduli space. Using algebraic geometry argument one can
show that Mg contains exactly one point(see [5] or [6]), or equivalently:

Proposition 3.1. There is a class a and orientation 2 such that q(c, Q) = 1.
An immediate corollary is the following:

Corollary 3.2. There is no diffeomorphism of X which acts trivially on H*(X;Z5)
but reverses the orientation of H(X).

Proof. Let f: X — X be any orientation-preserving diffeomorphism, then due
to the naturality of the invariant we see:

q(f*(a), f1 () = ¢(, Q)

If f*(a) = a but f*(Q) = —Q, we will see that g(a,Q) = 0, contrary to
Proposition 3.1. O

Now we can show the h-cobordism theorem fails in dimension 4.

Corollary 3.3. There is a simply-connected 5-dimensional h-cobordism which
is not a product.

Proof. Any h-cobordism W between simply-connected 4-manifolds X; and X
induces an isomorphism fy : H*(X1) — H?(Xz), preserving the intersection
forms. The converse is also true due to Wall(cf [1]), i.e. any form-preserving
isomorphism between the cohomology of simply-connected 4-manifolds can be
realized as fy for some h-cobordism W.

Now take X7 and X5 both to be the K3 surface and obtain an h-cobordism
W realizing the map —1 on H?2. This cannot be a product, otherwise we obtain
a diffeomorphism of X realizing —1 on cohomology, which contradicts with
Corollary 3.2 since H'(X) has odd dimension. O
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