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Abstract

This note is a brief introduction to Donaldson’s polynomial in-
variants(cf [6]). We will begin with basic facts about instanton
moduli spaces and construct these invariants via intersection the-
ory. Finally we will discuss about an explicit example and give its
application.
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1 Instanton moduli spaces

We start with the derivation of instanton moduli spaces and some fundamental
properties. Given a closed Riemannian 4-manifold X and an Hermitian bundle
E over X, we say a connection A on E is anti-self-dual if its curvature satisfies
∗FA = −FA. Here ∗ is the Hodge star operator given by underlying Rieman-
nian metric. Such connections are called instantons. Clearly ASD condition is
preserved by gauge group action, so we consider the set of all instantons moduli
gauge action, which is the moduli space of instantons. The fundamental fact is
the following theorem(cf [2]):

Theorem 1.1 (Freed-Uhlenbeck,1984). Fix a non-trivial SU(2)-bundle E
over a simply-connected 4-manifold X with second Chern number k. If b+(X) >
0, then for generic smooth Riemannian metric g of X, the moduli space Mk(g)
contains no reducible connections and is a smooth manifold of dimension 8k −
3(b+ + 1).

Orientability of moduli spaces. This is a general fact for all 4-manifolds,
not only just simply-connected case. Let E → X be an SU(2)-bundle, and let
Ms be the open subset of regular irreducible connections, then Donaldson proved
in [4]:

Theorem 1.2 (Donaldson,1987). The moduli space Ms is orientable, with a
canonical orientation induced by an orientation of the space H1(X)⊕H+(X).
Here H+(X) denotes the maximal positive subspace of H2(X) with respect to
the intersection form.

Compactification of moduli spaces. The compactification is defined by
Donaldson in [3], essentially due to Uhlenbeck. Donaldson defined the ideal
connection to be a pair ([A], (x1, ..., xl)) where [A] is a point in Mk−l, with
its curvature density defined to be the measure |FA|2 + 8π2

∑
j δxj

. We say
a sequence of ideal connections converges weakly if their curvature densities
converge as measures and their connections converge in C∞ over punctured
manifold. The notion of weak convergence endows the set of all ideal ASD
connections

IMk = Mk ∪Mk−1 ×X ∪Mk−2 × s2(X) ∪ ... ∪M0 × sk(X)

with a topology. Here sl(X) denotes the l-th symmetric product of X. Denote
by Mk the closure of Mk in IMk. The main result is the following:

Theorem 1.3 (Donaldson,1986). The space Mk is compact.

2 Construction of Donaldson’s invariants

We are going to construct Donaldson’s polynomial invariant(cf [5]). Let B∗X be
the orbit space of irreducible connections on E over X. View the moduli space
M as a subset of B∗X . We wish to define invariants of X via a pairing 〈β, [M ]〉,
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for certain cohomology classes β ∈ H∗(B∗X). But usually M is non-compact, so
we need to modify the definition via intersection theory.

Assume now the dimension of moduli space Mk is even, say dim Mk = 2d,
where d = d(k) = 4k − 3

2 (b+(X) + 1). This requires that b+ is odd, so we
may assume b+(X) is odd and ≥ 3 to avoid reducible connections(cf Theorem
1.1). Fix an orientation Ω for H+(X), we seek for invariants qk,Ω(Σ1, ...,Σd)
satisfying the following property:

(i) qk,Ω(Σ1, ...,Σd) depends on Σi only through its homology class;

(ii) qk,Ω(Σ1, ...,Σd) is multilinear and symmetric in [Σi];

(iii) qk,−Ω = −qk,Ω;

(iv) qk is natural, in the sense that if f : X → Y is an orientation-preservation
diffeomorphism, then

qk,f∗Ω(f∗(Σ1), ..., f∗(Σd)) = qk,Ω(Σ1, ...,Σd).

where Σi are some embedded surfaces of X in general position.
Determinant line bundles. Suppose we have a family of operators {Dt :

Γ(Et⊗V )→ Γ(Et⊗W )} parametrized by a space T , we construct a line bundle
over T , whose fibres are:

det ind(Dt) = Λmax(Ker Dt)⊗ (Λmax(Coker Dt))
∗

In our case, choose a square root of the canonical bundle K of a Riemann surface
Σ, i.e. a line bundle K

1
2 with K

1
2 ⊗K 1

2 = K. The Dirac operator then becomes
the usual ∂ operator twisted by K

1
2 , written as δΣ : Ω0,0 ⊗K 1

2 → Ω0,1 ⊗K 1
2 .

We define LΣ to be the determinant line bundle over B∗Σ for the family of
operators δ∗Σ,A, obtained by coupling δ∗Σ to the connection A. For any tubular
neighbourhood ν(Σ) of Σ, we also write LΣ → B∗ν(Σ) to be the pull-back of
previous line bundle via the restriction map.

Transversal intersections. Now suppose the tubular neighbourhoods
ν(Σi) are sufficiently small such that for distinct i, j, k:

ν(Σi) ∩ ν(Σj) ∩ ν(Σk) = ∅

For each i we choose a section si of the line bundle LΣi over B∗ν(Σi)
and let VΣi

be its zero-set. Transversality argument shows:

Proposition 2.1. We can choose sections si such that the intersection Mk ∩
VΣ1
∩ ... ∩ VΣd

is transverse. Moreover, the intersection is compact, and hence
finite. Here the precise meaning of the intersection is that Mk ∩ VΣ = {[A] ∈
Mk|[A|ν(Σ)] ∈ VΣ}.

We are now in a position to define Donaldson’s polynomial invariants. Each
point of the intersection Mk ∩ VΣ1 ∩ ... ∩ VΣd

carries a sign ±1 since both Mk

and the normal bundles of VΣi
are oriented. We define qk,Ω by counting these

points with signs. The main assertion is that the definition is independent of
all the choices we have made:
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Theorem 2.2 (Donaldson,1990). Under our assumption, if moreover k is
in the stable range, i.e. d(k) ≥ 2k + 1, then the integer qk,Ω satisfies proper-
ties (i)-(iv) and is independent of the choices made as well as the underlying
Riemannian metric, thus defining a differential topological invariant.

Finally we want to point out that parallel theory holds when the gauge group
is SO(3) with a little bit more careful treatment.

3 Application to differential topology

It turns out that Donaldson’s invariants are unstable under the connected sum
operation, thus being plausible to obtain new information beyond the inter-
section form. In the following part, we will consider a K3 surface example to
deduce the failure of h-cobordism theorem in dimension 4, thus showing that
these invariants are highly non-trivial.

Recall a K3 surface is a compact simply-connected complex surface with
trivial canonical bundle. Let X be a K3 surface and let α ∈ H2(X; Z2) be a
class with α2 = 2 (mod4). Consider the SO(3)-bundle F with w2(F ) = α and
p1(F ) = −6. Under such condition, the formal dimension of the moduli space
MF is zero, so in this case the polynomial invariant is just counting with signs
the points in the moduli space. Using algebraic geometry argument one can
show that MF contains exactly one point(see [5] or [6]), or equivalently:

Proposition 3.1. There is a class α and orientation Ω such that q(α,Ω) = 1.

An immediate corollary is the following:

Corollary 3.2. There is no diffeomorphism of X which acts trivially on H2(X; Z2)
but reverses the orientation of H+(X).

Proof. Let f : X → X be any orientation-preserving diffeomorphism, then due
to the naturality of the invariant we see:

q(f∗(α), f∗(Ω)) = q(α,Ω)

If f∗(α) = α but f∗(Ω) = −Ω, we will see that q(α,Ω) = 0, contrary to
Proposition 3.1.

Now we can show the h-cobordism theorem fails in dimension 4.

Corollary 3.3. There is a simply-connected 5-dimensional h-cobordism which
is not a product.

Proof. Any h-cobordism W between simply-connected 4-manifolds X1 and X2

induces an isomorphism fW : H2(X1) → H2(X2), preserving the intersection
forms. The converse is also true due to Wall(cf [1]), i.e. any form-preserving
isomorphism between the cohomology of simply-connected 4-manifolds can be
realized as fW for some h-cobordism W .

Now take X1 and X2 both to be the K3 surface and obtain an h-cobordism
W realizing the map −1 on H2. This cannot be a product, otherwise we obtain
a diffeomorphism of X realizing −1 on cohomology, which contradicts with
Corollary 3.2 since H+(X) has odd dimension.
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